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Project Overview

® Goal, and Objectives

Develop new optical fibers for nuclear industry

Explore and demonstrate distributed multi-functional fiber optical sensors for nuclear industry

— ue, T, vibration, P, level, chemical, and radiation with high spatial resolutions
Evaluate various distributed sensing schemes and demonstrate unique capability
Develop manufacturing schemes for sensor-fused smart parts for nuclear industry.

Evaluate fiber sensors for extreme harsh environments (neutron radiation).

® Participants

University of Pittsburgh: Dr. Kevin P. Chen (PI), Zsolt Poole, Aidong Yan, Rongzhang Chen,
and Mohamed Zaghloul

Westinghouse Electrical Company: Dr. Michael Heibel, Dr. Robert Flammang, and Melissa
Walter

Corning Inc.: Dr. Ming-Jun Li and Jeffrey Stone

B Schedule:

Year 1: active fiber sensing technique developments, multi-functional fiber fabrications
Year 2: distributed pressure and temperature measurements in radiation environments

Year 3: distributed hydrogen sensing in radiation environments
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Project Overview

B What is unique about fiber optical sensors?

* Resistant to harsh environments (but no all environments).

— High Temperature up to 800C, high pressure up to 2500 psi, gamma radiation (MGy).

— High neutron radiation (to be evaluated)

* Fully embeddable into concrete, metal, and existing infrastructures

* Unique capability to perform distributed measurements with high spatial resolution (1-10cm)

B What is unique about nuclear applications?

* Radiation (but no all environments are extremely radioactive)

* Need perform a wide arrange of measurements beyond temperature and strains

30-day Dosage (G¥)

Spent Nuclear | Containment Steam Research Facilities
Fuel Pool Dome Generator | (LHC, LMJ, IR
Normal Operation 2 mGy/he 50 uGyhr | <10 mGy/he 50 c'av
Radiation ' R ’ ?
Normal Operation &h o . £ 1O .
20-yr Dosage (Gy) 350 Gy, 88 Gy 175 kGy 200 kGy.
Post-Accident 8 ol . & Coul
Radiation (Gy/ho) 2 Gyl SGy/h > G/ BEA
s LR 1.44 kGy 3.7 KGy 37 KGy N/A
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Research Approach

H Fibers

* Developing new optical fibers with built-in capability to perform distribution radiation
measurements (for measurements and for calibration)

* Developing new multi-functional optical fibers for multiple parameter measurements

B Sensing Technology
* Evaluate various distributed sensing schemes (Rayleigh, Brillouin, FBGs) under radiation for
short and long terms measurements

* Develop new distributed sensing technology beyond T/strain measurements
— Liquid levels
— Pressure and T simultaneously + radiation
— Chemical (hydrogen) and spatially resolved chemical reaction

— Fiber optical vibration sensing for radiation environments

H Implementations and Applications in Nuclear Engineering

* Smart parts manufacturing: Fiber embedding and testing
* New sensor platforms (smart cable, small concrete, and ...?)
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* v radiation: max. ~5000 Gy/hr on fibers
* Performed in Westinghouse Churchill facility
* Brillouin OTDR schemes and Rayleigh OFDR distributed sensing scheme
* Fiber Bragg gratings and fiber acoustic sensors
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B LUNA OBR 4600
B Swept wavelength interferometry

B Compares (with cross correlation) backscattering vs. reference to determine
loss, temperature, and strain

Smoothed Accumulated Losses (dB/mm)
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Radiation Tests

Radiation Tests

Fiber Types SMF28 | Vascade | High Ge- Alumina Random
air-hole

RIA (dB/km) 96 35651
* 1MGy y dosage (Co-60 source) Random Air Holes Fiber
* SMF-28 standard optical fiber
* Vascade: Corning ultra-low loss, pure silica core/F-doped cladding Bl ety P a2 M Sl e ot
+ Random air-hole: new all silica fiber N e W
*  Random air-hole cladding (low cost) e
*  Allsilica structures (sustain >400C more than F-doped fibers) § :j
Radiation Resistant Fiber Radiation Sensitive Fiber
. . . . . . . 2.0 : : T T T o . . i . i
1.2+ Radiation Resistant Fiber — 10 Gy 11080 l;:llffuin F;‘q’ljzncy (:\;::ZO) 11160
T 1o soKoy 1.6 ——240 Gy
a ——360 Gy
%« 0.8 "':;‘ sl —480 Gy
5 o z Data/Tests to be done
g g0 * Neutron radiation
5 04 * Increase dosage to 10 MGy
>  Head-to-head comparison with Rayleigh/FBG
a0 okan b 1k 1040 110e0 1080 1710 1 : . : . * Test strain/T coefficient vs. radiation
Brillouin Frequency (MHz) 11150 11200 11250 11300 11350

Brillouin Frequency (MHz)
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Electrical Cable as Sensor Platform (7
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—4.96 Krad
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—12.26 Krad
—20.08 Krad
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—31.82 Krad
——53.47 Krad
—83.99 Krad

Distance (m)

Using electric cables as ubiquitous
sensor platforms.
No need to re-design nuclear
power systems for sensor
integration.
Direct monitoring of cable aging
with high spatial resolution.
Fiber inserted as distributed
sensors or point sensors with
interrogation length 0.1-10 km.

* Temperature

* Pressure

* Strain (cable degradation)

* Volatile chemical and hydrogen

* Leak and moisture

* Radiation
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e ‘“Appropriate” harsh environments

(modest/minimal neutron radiation)

* Radiation-harden microstructural
fiber for simultaneous temperature
and pressure measurements

e T ~650C, Pressure 200bars

* T resolution 1C
* P resolution 1%

* Distributed fiber solution 1-cm
resolution

* One fiber cable, one fiber
feedthrough.

11
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* Nano-Engineered metal oxide sensory film
* Porosity control for refractive index matching
* Rare-earth or noble metal dopants for specificity
* Pd-TiO2

* Sensor must operate >600C

* No electrical components in target environment

Nano-Structured Layer

Al,O,
Sapphire

3 nm

12
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Fiber Optic Hydrogen Sensor at 700C

Optical Transmission vs. Hydrogen Concentrations
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Exposed to various concentrations of hydrogen in nitrogen, recovered with nitrogen
Ideal for hydrogen driven energy conversion systems
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Nuclear Energy Level Measurements in Spent Fuel Rod Pool

All-temperature Continuous Level Sensing using self-heated
fiber and Rayleigh backscattering:

50/50
Bi-directional

OBR for Rayleigh [ _—1
Backscattering

Heating Light . . . .
Source R Fig. 10: schetnatic of active fiber

level sensor in spent fuel rod pools.

Hot-wire level sensing

40
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Nuclear Energy Level Measurements in Spent Fuel Rod Pool

* Heating span 10-m.

* Temperature fluctuation might caused by air flow or coating
* 1-10W electricity for heating

* Power off: temperature measurements

* Power on: water level measurement.

* High sensitivity to surrounding medium validated

Brillouin Frequency vs. T
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B Establish a reliable way to implement fibers in harsh
environments

B Standard optical fibers

B Electroless/sputtering coating of glue layers
B Electroplating of Ni/Fe protective layer
|

Embedding process using a 3D printing scheme
(LENS) into mixed alloy

B Repeated thermal cycling and annealing at 900C
appears to yield consistent results

B 3D printing provide GREAT protection to fiber sensors

1600
1400 - Slope: 2.57
1200 |
Py
(c) 1000 - /
=~ / Slope: 2.52
™= goo} /, _
SN / \-/ -
= 6001 / g
% | / _~~ | —m— Glass fiber heating
L 400 |- @ Class fiber cooling
2 I . —A— Embed fiber heating
200 - } —v— Embed fiber cooling
F : = = Linear fit of heating
0f = = Linear fit of cooling
1 M 1 M 1 L 1 M 1 M 1 M 1 M 1

0 l100 200 300 400 500 600 700 800
Furnace Setting T(°C) 16
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TEC of Fe-Ni Alloy
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Qifi/26:/:20116 1]1F524

Thermal acoustic resonators for in-pile temperature
sensing.

Simulators have five acoustic resonators
Distributed feedback fiber lasers as acoustic sensors
3x3 interferometer for fast signal decoding

Cut-off frequency of measurements 150 kHz

Frequency measurement accuracy at 1 Hz
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DFB fiber acoustic sensor measurements
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In-Pile Neutron Tests:
FBG Point Sensors and Distributed Sensors

Thermal Regeneration Process Enhanced Rayleigh Scattering
Seed FBG |
0.10 /
30.08 % .
%’ 0.06 ?so B ,h'}‘ « ’“‘mw,m A
Hz—loading s E‘ 60 W W v
* E 0 04 1546 1548 1550 1552 1554
o Wavelength (nm)
Heating for £,0.02 Regenerative
Hydrogenation (800°C) =2 )C\ gFB G
0.00 : : :
& 154vzv , 154t5h( )1548
= aveleng nm
Regeneration : o 4o
(1200°) Ultrafast laser irradiation
¢ ~1.0 30°C 200°C 400°C  600°C  800°C  1000°C  1200°C y Tlsapphlre 25 0'kHZa 180-fS, 780-nm
Stabilization A * 0.2-0.5 J, 0.5-10 mm/s
(1200°) 0.8
.‘? S0 —24°C
2 0.6 ol ——200°C
D
E 0 4 = -0
e =
= 0.2 2 80
o0 £
Sl AN LA LN A £ o
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1 1 1 1 1 1 1
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Highly Stable Rayleigh Fibers at High-T

B Rayleigh enhanced fiber stable up to 800C in 10% hydrogen!
B Temperature measurement S-mm spatial resolution
B Repeatability better than 4C at 800C in H2 environments
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Technology Impacts and Conclusion

B Advances the state of the art and support NE and nuclear industry

* Develop distributed fiber sensing solutions to perform robust and multi-
functional measurements beyond T and ue.

* Develop new optical fibers with an integrated function for distributed
radiation measurements.

* Provide unique sensing capability unattainable by other measurement
schemes

W Explain how this technology impacts nuclear stakeholders

* Improve safety of nuclear power systems: distributed fiber chemical sensors
for gas measurements (e.g. Hydrogen), distributed fiber sensors to monitor
spent nuclear fuel pools, and efc.

* Provide new tools to monitor radiation effects to critical components,
systems, and infrastructures.

* Mature TRL levels of fiber sensors by developing new sensor packaging
scheme and sensor-fused smart components

22
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Questions?

Kevin P. Chen
University of Pittsburgh
Email: pec9@pitt.edu
Tel. 412-624-9675
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